Search results
Results From The WOW.Com Content Network
A circuit composed solely of components connected in series is known as a series circuit; likewise, one connected completely in parallel is known as a parallel circuit. Many circuits can be analyzed as a combination of series and parallel circuits, along with other configurations .
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor. A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.
A network with two components or branches has only two possible topologies: series and parallel. Figure 1.2. Series and parallel topologies with two branches. Even for these simplest of topologies, the circuit can be presented in varying ways. Figure 1.3. All these topologies are identical. Series topology is a general name.
Parallel RL circuit. When both the resistor and the inductor are connected in parallel connection and supplied through a voltage source, this is known as a RL parallel circuit. [2] The parallel RL circuit is generally of less interest than the series circuit unless fed by a current source.
The star-to-delta and series-resistor transformations are special cases of the general resistor network node elimination algorithm. Any node connected by N resistors (R 1 … R N) to nodes 1 … N can be replaced by () resistors interconnecting the remaining N nodes. The resistance between any two nodes x, y is given by:
Connecting a spring and damper in series yields a model of a Maxwell material while connecting a spring and damper in parallel yields a model of a Kelvin–Voigt material. [2] In contrast to the Maxwell and Kelvin–Voigt models, the SLS is slightly more complex, involving elements both in series and in parallel.
The Norton resistance R no is found by calculating the output voltage V o produced at A and B with no resistance or load connected to, then R no = V o / I no; equivalently, this is the resistance between the terminals with all (independent) voltage sources short-circuited and independent current sources open-circuited (i.e., each independent ...