When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    The set M(n, R) (also denoted M n (R) [7]) of all square n-by-n matrices over R is a ring called matrix ring, isomorphic to the endomorphism ring of the left R-module R n. [58] If the ring R is commutative, that is, its multiplication is commutative, then the ring M(n, R) is also an associative algebra over R.

  3. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    From the original definition, the matrix presents n data points in an m-dimensional space. The L 2 , 1 {\displaystyle L_{2,1}} norm [ 6 ] is the sum of the Euclidean norms of the columns of the matrix:

  4. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    A is row-equivalent to the n-by-n identity matrix I n. A is column-equivalent to the n-by-n identity matrix I n. A has n pivot positions. A has full rank: rank A = n. A has a trivial kernel: ker(A) = {0}. The linear transformation mapping x to Ax is bijective; that is, the equation Ax = b has exactly one solution for each b in K n.

  5. M-matrix - Wikipedia

    en.wikipedia.org/wiki/M-matrix

    An M-matrix is commonly defined as follows: Definition: Let A be a n × n real Z-matrix.That is, A = (a ij) where a ij ≤ 0 for all i ≠ j, 1 ≤ i,j ≤ n.Then matrix A is also an M-matrix if it can be expressed in the form A = sI − B, where B = (b ij) with b ij ≥ 0, for all 1 ≤ i,j ≤ n, where s is at least as large as the maximum of the moduli of the eigenvalues of B, and I is an ...

  6. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The column space of an m × n matrix with components from is a linear subspace of the m-space. The dimension of the column space is called the rank of the matrix and is at most min(m, n). [1] A definition for matrices over a ring is also possible. The row space is defined similarly.

  7. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    where I m and I n are the m × m and n × n identity matrices, respectively. From this general result several consequences follow. For the case of column vector c and row vector r , each with m components, the formula allows quick calculation of the determinant of a matrix that differs from the identity matrix by a matrix of rank 1:

  8. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    The n × n matrices that have an inverse form a group under matrix multiplication, the subgroups of which are called matrix groups. Many classical groups (including all finite groups ) are isomorphic to matrix groups; this is the starting point of the theory of group representations .

  9. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.