Ad
related to: slab waveguides pdf
Search results
Results From The WOW.Com Content Network
Perhaps the simplest optical waveguide is the dielectric slab waveguide, [2] also called a planar waveguide. [3] Owing to their simplicity, slab waveguides are often used as toy models but also find application in on-chip devices like arrayed waveguide gratings and acousto-optic filters and modulators.
Waveguides are interesting objects of study from a strictly mathematical perspective. A waveguide (or tube) is defined as type of boundary condition on the wave equation such that the wave function must be equal to zero on the boundary and that the allowed region is finite in all dimensions but one (an infinitely long cylinder is an example.)
As already said, in NRD waveguide TM or (m≠0) TE modes with reference to the z direction cannot exist, because they cannot satisfy the conditions imposed by the presence of the dielectric slab. Yet, it is known that a propagation mode inside a guiding structure can be expressed as a superposition of a TM field and a TE field with reference to z.
In radio-frequency engineering and communications engineering, a waveguide is a hollow metal pipe used to carry radio waves. [1] This type of waveguide is used as a transmission line mostly at microwave frequencies, for such purposes as connecting microwave transmitters and receivers to their antennas, in equipment such as microwave ovens, radar sets, satellite communications, and microwave ...
A slot-waveguide is an optical waveguide that guides strongly confined light in a subwavelength-scale low refractive index region by total internal reflection.. A slot-waveguide consists of two strips or slabs of high-refractive-index (n H) materials separated by a subwavelength-scale low-refractive-index (n S) slot region and surrounded by low-refractive-index (n C) cladding materials.
Marcatili’s method is an approximate analytical method that describes how light propagates through rectangular dielectric optical waveguides. It was published by Enrique Marcatili in 1969. [1] Optical dielectric waveguides guide electromagnetic waves in the optical spectrum (light).
ARROWs can be realized as cylindrical waveguides (2D confinement) or slab waveguides (1D confinement). The latter ARROWs are practically formed by a low index layer, embedded between higher index layers. Note that the refractive indices of these ARROWs are reversed, when comparing to usual waveguides.
Although the scattering length density profile is normally a continuously varying function, the interfacial structure can often be well approximated by a slab model in which layers of thickness (d n), scattering length density (ρ n) and roughness (σ n,n+1) are sandwiched between the super- and sub-phases. One then uses a refinement procedure ...