Search results
Results From The WOW.Com Content Network
Genuine MAPP gas can be used in combination with oxygen for heating, soldering, brazing and even welding because of its high flame temperature of 2925 °C (5300 °F) in oxygen. Although acetylene has a higher flame temperature (3160 °C, 5720 °F), MAPP has the advantage that it requires neither dilution nor special container fillers during ...
Propane is often the fuel of choice because of its low price, ease of storage and availability, hence the name "propane torch". The gasses MAPP gas and Map-pro are similar to propane, but burn hotter. They are usually found in a yellow canister, as opposed to propane's blue, black, or green.
MAPP gas can be used at much higher pressures than acetylene, sometimes up to 40 or 50 psi in high-volume oxy-fuel cutting torches which can cut up to 12-inch-thick (300 mm) steel. Other welding gases that develop comparable temperatures need special procedures for safe shipping and handling.
Ethanol burning with its spectrum depicted. In the study of combustion, the adiabatic flame temperature is the temperature reached by a flame under ideal conditions. It is an upper bound of the temperature that is reached in actual processes.
Burn rate (typically expressed in mm/s or in/s) is the sample length over time at a given pressure and temperature. For solid fuel propellant, the most common method of measuring burn rate is the Crawford Type Strand Burning Rate Bomb System [3] (also known as the Crawford Burner or Strand Burner), as described in MIL-STD-286C. [4]
The adiabatic flame temperature of a given fuel and oxidizer pair is that at which the gases achieve stable combustion. Oxy–dicyanoacetylene 4,990 °C (9,000 °F) Oxy–acetylene 3,480 °C (6,300 °F) Oxyhydrogen 2,800 °C (5,100 °F) Air–acetylene 2,534 °C (4,600 °F) Blowtorch (air–MAPP gas) 2,200 °C (4,000 °F)
Limits vary with temperature and pressure, but are normally expressed in terms of volume percentage at 25 °C and atmospheric pressure. These limits are relevant both in producing and optimising explosion or combustion, as in an engine, or to preventing it, as in uncontrolled explosions of build-ups of combustible gas or dust.
At standard temperature and pressure, oxyhydrogen can burn when it is between about 4% and 95% hydrogen by volume. [ 5 ] [ 4 ] When ignited, the gas mixture converts to water vapor and releases energy , which sustains the reaction: 241.8 kJ of energy ( LHV ) for every mole of H 2 burned.