When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Molality - Wikipedia

    en.wikipedia.org/wiki/Molality

    The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]

  3. Ebullioscopic constant - Wikipedia

    en.wikipedia.org/wiki/Ebullioscopic_constant

    In thermodynamics, the ebullioscopic constant K b relates molality b to boiling point elevation. [1] It is the ratio of the latter to the former: = i is the van 't Hoff factor, the number of particles the solute splits into or forms when dissolved. b is the molality of the solution.

  4. Apparent molar property - Wikipedia

    en.wikipedia.org/wiki/Apparent_molar_property

    It is described as apparent because it appears to represent the molar property of that component in solution, provided that the properties of the other solution components are assumed to remain constant during the addition. However this assumption is often not justified, since the values of apparent molar properties of a component may be quite ...

  5. Molar concentration - Wikipedia

    en.wikipedia.org/wiki/Molar_concentration

    Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]

  6. Boiling-point elevation - Wikipedia

    en.wikipedia.org/wiki/Boiling-point_elevation

    b c is the colligative molality, calculated by taking dissociation into account since the boiling point elevation is a colligative property, dependent on the number of particles in solution. This is most easily done by using the van 't Hoff factor i as b c = b solute · i, where b solute is the molality of the solution. [3]

  7. Cryoscopic constant - Wikipedia

    en.wikipedia.org/wiki/Cryoscopic_constant

    b is the molality of the solution. Through cryoscopy, a known constant can be used to calculate an unknown molar mass. The term "cryoscopy" means "freezing measurement" in Greek. Freezing point depression is a colligative property, so ΔT depends only on the number of solute particles dissolved, not the nature of those particles.

  8. Henry's law - Wikipedia

    en.wikipedia.org/wiki/Henry's_law

    Defining the aqueous-phase composition via molality has the advantage that any temperature dependence of the Henry's law constant is a true solubility phenomenon and not introduced indirectly via a density change of the solution. Using molality, the Henry solubility can be defined as =.

  9. Molar mass - Wikipedia

    en.wikipedia.org/wiki/Molar_mass

    The freezing point of a solution is lower than that of the pure solvent, and the freezing-point depression (ΔT) is directly proportional to the amount concentration for dilute solutions. When the composition is expressed as a molality, the proportionality constant is known as the cryoscopic constant (K f) and is