When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Newtonian_fluid

    For an incompressible and isotropic Newtonian fluid in laminar flow only in the direction x (i.e. where viscosity is isotropic in the fluid), the shear stress is related to the strain rate by the simple constitutive equation = where is the shear stress ("skin drag") in the fluid,

  3. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The concepts invoked in Newton's laws of motion — mass, velocity, momentum, force — have predecessors in earlier work, and the content of Newtonian physics was further developed after Newton's time. Newton combined knowledge of celestial motions with the study of events on Earth and showed that one theory of mechanics could encompass both.

  5. Shearing (physics) - Wikipedia

    en.wikipedia.org/wiki/Shearing_(physics)

    The rectangularly-framed section has deformed into a parallelogram (shear strain), but the triangular roof trusses have resisted the shear stress and remain undeformed. In continuum mechanics, shearing refers to the occurrence of a shear strain, which is a deformation of a material substance in which parallel internal surfaces slide past one another.

  6. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    The basic stress analysis problem can be formulated by Euler's equations of motion for continuous bodies (which are consequences of Newton's laws for conservation of linear momentum and angular momentum) and the Euler-Cauchy stress principle, together with the appropriate constitutive equations.

  7. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.

  8. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    In a Newtonian fluid, the relation between the shear stress and the shear rate is linear, passing through the origin, the constant of proportionality being the coefficient of viscosity. In a non-Newtonian fluid, the relation between the shear stress and the shear rate is different, and can even be time-dependent.

  9. Newtonian dynamics - Wikipedia

    en.wikipedia.org/wiki/Newtonian_dynamics

    The configuration space and the phase space of the dynamical system both are Euclidean spaces, i. e. they are equipped with a Euclidean structure.The Euclidean structure of them is defined so that the kinetic energy of the single multidimensional particle with the unit mass = is equal to the sum of kinetic energies of the three-dimensional particles with the masses , …,: