When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Particular values of the gamma function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    It is unknown whether these constants are transcendental in general, but Γ(⁠ 1 / 3 ⁠) and Γ(⁠ 1 / 4 ⁠) were shown to be transcendental by G. V. Chudnovsky. Γ(⁠ 1 / 4 ⁠) / 4 √ π has also long been known to be transcendental, and Yuri Nesterenko proved in 1996 that Γ(⁠ 1 / 4 ⁠), π, and e π are algebraically independent.

  3. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function ⁠ 1 / Γ(z) ⁠ is an entire function.

  4. Gamma distribution - Wikipedia

    en.wikipedia.org/wiki/Gamma_distribution

    [4] The gamma distribution is the maximum entropy probability distribution (both with respect to a uniform base measure and a / base measure) for a random variable X for which E[X] = αθ = α/λ is fixed and greater than zero, and E[ln X] = ψ(α) + ln θ = ψ(α) − ln λ is fixed (ψ is the digamma function). [5]

  5. Gamma correction - Wikipedia

    en.wikipedia.org/wiki/Gamma_correction

    On some operating systems running the X Window System, one can set the gamma correction factor (applied to the existing gamma value) by issuing the command xgamma -gamma 0.9 for setting gamma correction factor to 0.9, and xgamma for querying current value of that factor (the default is 1.

  6. Euler's constant - Wikipedia

    en.wikipedia.org/wiki/Euler's_constant

    The notation γ appears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time, perhaps because of the constant's connection to the gamma function. [3] For example, the German mathematician Carl Anton Bretschneider used the notation γ in 1835, [ 4 ] and Augustus De Morgan used it in a textbook published in parts ...

  7. Lanczos approximation - Wikipedia

    en.wikipedia.org/wiki/Lanczos_approximation

    In mathematics, the Lanczos approximation is a method for computing the gamma function numerically, published by Cornelius Lanczos in 1964. It is a practical alternative to the more popular Stirling's approximation for calculating the gamma function with fixed precision.

  8. Gamma number - Wikipedia

    en.wikipedia.org/wiki/Gamma_number

    In mathematics a gamma number may be: A value of the gamma function; An additively indecomposable ordinal; An ordinal ...

  9. Incomplete gamma function - Wikipedia

    en.wikipedia.org/wiki/Incomplete_gamma_function

    Repeated application of the recurrence relation for the lower incomplete gamma function leads to the power series expansion: [2] (,) = = (+) (+) = = (+ +). Given the rapid growth in absolute value of Γ(z + k) when k → ∞, and the fact that the reciprocal of Γ(z) is an entire function, the coefficients in the rightmost sum are well-defined, and locally the sum converges uniformly for all ...