Search results
Results From The WOW.Com Content Network
The dot product of two vectors and of equal length is equal to the single entry of the matrix resulting from multiplying these vectors as a row and a column vector, thus: (or , which results in the same matrix).
Matrix multiplication involves the action of multiplying each row vector of one matrix by each column vector of another matrix.. The dot product of two column vectors a, b, considered as elements of a coordinate space, is equal to the matrix product of the transpose of a with b,
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
The logical operation and takes the place of multiplication. The outer product of two logical vectors (u i) and (v j) is given by the logical matrix () = (). This type of matrix is used in the study of binary relations, and is called a rectangular relation or a cross-vector. [12]
The vectorization is frequently used together with the Kronecker product to express matrix multiplication as a linear transformation on matrices. In particular, = for matrices A, B, and C of dimensions k×l, l×m, and m×n.
The online vector-matrix-vector problem (OuMv) is a variant of OMv where the algorithm receives, at each round , two Boolean vectors and , and returns the product . This version has the benefit of returning a Boolean value at each round instead of a vector of an n {\displaystyle n} -dimensional Boolean vector.