Search results
Results From The WOW.Com Content Network
Every composite number can be written as the product of two or more (not necessarily distinct) primes. [2] For example, the composite number 299 can be written as 13 × 23, and the composite number 360 can be written as 2 3 × 3 2 × 5; furthermore, this representation is unique up to the order of the factors.
The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.
the k given prime numbers p i must be precisely the first k prime numbers (2, 3, 5, ...); if not, we could replace one of the given primes by a smaller prime, and thus obtain a smaller number than n with the same number of divisors (for instance 10 = 2 × 5 may be replaced with 6 = 2 × 3; both have four divisors);
The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither ...
So if it is unknown whether a number n is prime or composite, we can pick a random number a, calculate the Jacobi symbol ( a / n ) and compare it with Euler's formula; if they differ modulo n, then n is composite; if they have the same residue modulo n for many different values of a, then n is "probably prime".
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
A strong Fibonacci pseudoprime is a composite number n for which congruence holds for Q = −1 and all P. [17] It follows [17]: 460 that an odd composite integer n is a strong Fibonacci pseudoprime if and only if: n is a Carmichael number; 2(p + 1) | (n − 1) or 2(p + 1) | (n − p) for every prime p dividing n.
Prime numbers have exactly 2 divisors, and highly composite numbers are in bold. 7 is a divisor of 42 because =, so we can say It can also be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2, 3, −3.