Search results
Results From The WOW.Com Content Network
In mathematics, the rational normal curve is a smooth, rational curve C of degree n in projective n-space P n. It is a simple example of a projective variety; formally, it is the Veronese variety when the domain is the projective line. For n = 2 it is the plane conic Z 0 Z 2 = Z 2 1, and for n = 3 it is the twisted cubic.
This is a list of Wikipedia articles about curves used in different fields: ... Rational curves are subdivided according to the degree of the polynomial. Degree 1
Equivalently, a variety is rationally connected if every two points are connected by a rational curve contained in the variety. [2] This definition differs from that of path connectedness only by the nature of the path, but is very different, as the only algebraic curves which are rationally connected are the rational ones.
In mathematics, the rank of an elliptic curve is the rational Mordell–Weil rank of an elliptic curve defined over the field of rational numbers or more generally a number field K. Mordell's theorem (generalized to arbitrary number fields by André Weil) says the group of rational points on an elliptic curve has a finite basis. This means that ...
An algebraic curve in the Euclidean plane is the set of the points whose coordinates are the solutions of a bivariate polynomial equation p(x, y) = 0.This equation is often called the implicit equation of the curve, in contrast to the curves that are the graph of a function defining explicitly y as a function of x.
If X is a curve of genus 1 with a k-rational point p 0, then X is called an elliptic curve over k. In this case, X has the structure of a commutative algebraic group (with p 0 as the zero element), and so the set X ( k ) of k -rational points is an abelian group .
Since the generic quintic threefold is a Calabi–Yau threefold and the moduli space of rational curves of a given degree is a discrete, finite set (hence compact), these have well-defined Donaldson–Thomas invariants (the "virtual number of points"); at least for degree 1 and 2, these agree with the actual number of points.
The rational Bézier curve adds adjustable weights to provide closer approximations to arbitrary shapes. The numerator is a weighted Bernstein-form Bézier curve and the denominator is a weighted sum of Bernstein polynomials. Rational Bézier curves can, among other uses, be used to represent segments of conic sections exactly, including ...