Search results
Results From The WOW.Com Content Network
In mathematics, the rational normal curve is a smooth, rational curve C of degree n in projective n-space P n. It is a simple example of a projective variety; formally, it is the Veronese variety when the domain is the projective line. For n = 2 it is the plane conic Z 0 Z 2 = Z 2 1, and for n = 3 it is the twisted cubic.
This is a list of Wikipedia articles about curves used in different fields: ... Rational curves are subdivided according to the degree of the polynomial. Degree 1
Equivalently, a variety is rationally connected if every two points are connected by a rational curve contained in the variety. [3] This definition differs from that of path connectedness only by the nature of the path, but is very different, as the only algebraic curves which are rationally connected are the rational ones.
Every irreducible complex algebraic curve is birational to a unique smooth projective curve, so the theory for curves is trivial. The case of surfaces was first investigated by the geometers of the Italian school around 1900; the contraction theorem of Guido Castelnuovo essentially describes the process of constructing a minimal model of any smooth projective surface.
An algebraic curve in the Euclidean plane is the set of the points whose coordinates are the solutions of a bivariate polynomial equation p(x, y) = 0.This equation is often called the implicit equation of the curve, in contrast to the curves that are the graph of a function defining explicitly y as a function of x.
If X is a curve of genus 1 with a k-rational point p 0, then X is called an elliptic curve over k. In this case, X has the structure of a commutative algebraic group (with p 0 as the zero element), and so the set X ( k ) of k -rational points is an abelian group .
In mathematics, the rank of an elliptic curve is the rational Mordell–Weil rank of an elliptic curve defined over the field of rational numbers or more generally a number field K. Mordell's theorem (generalized to arbitrary number fields by André Weil) says the group of rational points on an elliptic curve has a finite basis. This means that ...
Non-uniform rational basis spline (NURBS) is a mathematical model using basis splines (B-splines) that is commonly used in computer graphics for representing curves and surfaces. It offers great flexibility and precision for handling both analytic (defined by common mathematical formulae ) and modeled shapes .