Search results
Results From The WOW.Com Content Network
It is a hard (and often open) problem to calculate the minimum number of tickets one needs to purchase to guarantee that at least one of these tickets matches at least 2 numbers. In the 5-from-90 lotto, the minimum number of tickets that can guarantee a ticket with at least 2 matches is 100. [3]
Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to ...
Specifically, that two different procedures for determining that "at least one is a boy" could lead to the exact same wording of the problem. But they lead to different correct answers: From all families with two children, at least one of whom is a boy, a family is chosen at random. This would yield the answer of 1 / 3 .
From a permutations perspective, let the event A be the probability of finding a group of 23 people without any repeated birthdays. Where the event B is the probability of finding a group of 23 people with at least two people sharing same birthday, P(B) = 1 − P(A).
In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...
In the simplest case, if one allocates balls into bins (with =) sequentially one by one, and for each ball one chooses random bins at each step and then allocates the ball into the least loaded of the selected bins (ties broken arbitrarily), then with high probability the maximum load is: [8]
The probability that at least one of the events will occur is equal to one. [4] For example, there are theoretically only two possibilities for flipping a coin. Flipping a head and flipping a tail are collectively exhaustive events, and there is a probability of one of flipping either a head or a tail.
Log–log graph of the probability that a number starts with the digit(s) n, for a distribution satisfying Benford's law. The points show the exact formula, P(n) = log 10 (1 + 1/n). The graph tends towards the dashed asymptote passing through (1, log 10 e) with slope −1 in log–log scale. The example in yellow shows that the probability of a ...