Search results
Results From The WOW.Com Content Network
The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]
The Bohr model of the chemical bond could not explain the properties of the molecules. Attempts to improve it have been undertaken many times, but have not led to success. [3] A working theory of chemical bonding was formulated only by quantum mechanics on the basis of the principle of uncertainty and the Pauli exclusion principle. In contrast ...
Niels Henrik David Bohr (7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922.
Bohr considered one of the foundational truths of quantum mechanics to be the fact that setting up an experiment to measure one quantity of a pair, for instance the position of an electron, excludes the possibility of measuring the other, yet understanding both experiments is necessary to characterize the object under study. In Bohr's view, the ...
According to Bohr's complementarity principle, light is neither a wave nor a stream of particles. A particular experiment can demonstrate particle behavior (passing through a definite slit) or wave behavior (interference), but not both at the same time. [72] The same experiment has been performed for light, electrons, atoms, and molecules.
(The main source and substance for these thought experiments is solely from Bohr's account twenty years later.) [18] [19] Bohr admits: “As regards the account of the conversations I am of course aware that I am relying only on my own memory, just as I am prepared for the possibility that many features of the development of quantum theory, in ...
Bohr, meanwhile, defended the idea that quantum systems can only have their own reality defined after the scientist has set up the experimental design. “God does not play dice,” Einstein said.
A quantum jump is the abrupt transition of a quantum system (atom, molecule, atomic nucleus) from one quantum state to another, from one energy level to another. When the system absorbs energy, there is a transition to a higher energy level (); when the system loses energy, there is a transition to a lower energy level.