Search results
Results From The WOW.Com Content Network
In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence. = =. This is known as the harmonic series. [6]
In particular, one can no longer talk about the limit of a function at a point, but rather a limit or the set of limits at a point. A function is continuous at a limit point p of and in its domain if and only if f(p) is the (or, in the general case, a) limit of f(x) as x tends to p. There is another type of limit of a function, namely the ...
An example of an important asymptotic result is the prime number theorem. Let π(x) denote the prime-counting function (which is not directly related to the constant pi), i.e. π(x) is the number of prime numbers that are less than or equal to x. Then the theorem states that .
In probability theory, Lindeberg's condition is a sufficient condition (and under certain conditions also a necessary condition) for the central limit theorem (CLT) to hold for a sequence of independent random variables.
For example, it is possible to construct a sequence of continuous functions which has a discontinuous pointwise limit. Another notion of convergence is uniform convergence . The uniform distance between two functions f , g : E → R {\displaystyle f,g:E\rightarrow \mathbb {R} } is the maximum difference between the two functions as the argument ...
An important example of a log-concave density is a function constant inside a given convex body and vanishing outside; it corresponds to the uniform distribution on the convex body, which explains the term "central limit theorem for convex bodies".
In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form , = (,), (,) = ((,)),or other similar forms. An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value ...
Edgeworth's limit theorem ; Egorov's theorem (measure theory) Ehresmann's theorem (differential topology) Eilenberg–Zilber theorem (algebraic topology) Elitzur's theorem (quantum field theory, statistical field theory) Envelope theorem (calculus of variations) Equal incircles theorem (Euclidean geometry) Equidistribution theorem (ergodic theory)