Search results
Results From The WOW.Com Content Network
The quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second-fastest method known (after the general number field sieve).It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve.
The principle of the number field sieve (both special and general) can be understood as an improvement to the simpler rational sieve or quadratic sieve. When using such algorithms to factor a large number n , it is necessary to search for smooth numbers (i.e. numbers with small prime factors) of order n 1/2 .
Euclidean algorithm; Coprime; Euclid's lemma; Bézout's identity, Bézout's lemma; Extended Euclidean algorithm; Table of divisors; Prime number, prime power. Bonse's inequality; Prime factor. Table of prime factors; Formula for primes; Factorization. RSA number; Fundamental theorem of arithmetic; Square-free. Square-free integer; Square-free ...
Some examples of those algorithms are the elliptic curve method and the quadratic sieve. Another such algorithm is the class group relations method proposed by Schnorr, [11] Seysen, [12] and Lenstra, [13] which they proved only assuming the unproved generalized Riemann hypothesis.
He is the inventor of one of the integer factorization methods, the quadratic sieve algorithm, which was used in 1994 for the factorization of RSA-129. He is also one of the discoverers of the Adleman–Pomerance–Rumely primality test.
The primary improvement that quadratic sieve makes over Fermat's factorization method is that instead of simply finding a square in the sequence of , it finds a subset of elements of this sequence whose product is a square, and it does this in a highly efficient manner.
The second-fastest is the multiple polynomial quadratic sieve, and the fastest is the general number field sieve. The Lenstra elliptic-curve factorization is named after Hendrik Lenstra. Practically speaking, ECM is considered a special-purpose factoring algorithm, as it is most suitable for finding small factors.
The factorization was found using the Multiple Polynomial Quadratic Sieve algorithm. The factoring challenge included a message encrypted with RSA-129. When decrypted using the factorization the message was revealed to be "The Magic Words are Squeamish Ossifrage".