Search results
Results From The WOW.Com Content Network
In a survey of representative biplanes, real-life design decalage is typically zero, with both wings having equal incidence. A notable exception is the Stearman PT-17, which has 4° of incidence in the lower wing, and 3° in the upper wing.
Even with these restrictions, if the polar angle (inclination) is 0° or 180°—elevation is −90° or +90°—then the azimuth angle is arbitrary; and if r is zero, both azimuth and polar angles are arbitrary. To define the coordinates as unique, the user can assert the convention that (in these cases) the arbitrary coordinates are set to zero.
An angle equal to 0° or not turned is called a zero angle. [10] An angle smaller than a right angle (less than 90°) is called an acute angle [11] ("acute" meaning "sharp"). An angle equal to 1 / 4 turn (90° or π / 2 radians) is called a right angle. Two lines that form a right angle are said to be normal, orthogonal, or ...
The angle of attack is the angle between the chord line of an airfoil and the oncoming airflow. A symmetrical airfoil generates zero lift at zero angle of attack. But as the angle of attack increases, the air is deflected through a larger angle and the vertical component of the airstream velocity increases, resulting in more lift.
θ is the angle at which the projectile is launched; y 0 is the initial height of the projectile; If y 0 is taken to be zero, meaning that the object is being launched on flat ground, the range of the projectile will simplify to: =
This dihedral angle, also called the face angle, is measured as the internal angle with respect to the polyhedron. An angle of 0° means the face normal vectors are antiparallel and the faces overlap each other, which implies that it is part of a degenerate polyhedron. An angle of 180° means the faces are parallel, as in a tiling. An angle ...
Another convention, in reference to the usual codomain of the arctan function, is to allow for arbitrary nonzero real values of the radial component and restrict the polar angle to (−90°, 90°]. In all cases a unique azimuth for the pole (r = 0) must be chosen, e.g., φ = 0.
Angle AOB is a central angle. A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). [1]