When.com Web Search

  1. Ads

    related to: examples of set theory

Search results

  1. Results From The WOW.Com Content Network
  2. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory is the branch of mathematical logic that studies sets, ... For example, the set containing only the empty set is a nonempty pure set.

  3. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  4. Category of sets - Wikipedia

    en.wikipedia.org/wiki/Category_of_sets

    Every set is a projective object in Set (assuming the axiom of choice). The finitely presentable objects in Set are the finite sets. Since every set is a direct limit of its finite subsets, the category Set is a locally finitely presentable category. If C is an arbitrary category, the contravariant functors from C to Set are often an important ...

  5. Paradoxes of set theory - Wikipedia

    en.wikipedia.org/wiki/Paradoxes_of_set_theory

    In set theory, an infinite set is not considered to be created by some mathematical process such as "adding one element" that is then carried out "an infinite number of times". Instead, a particular infinite set (such as the set of all natural numbers) is said to already exist, "by fiat", as an assumption or an axiom. Given this infinite set ...

  6. Class (set theory) - Wikipedia

    en.wikipedia.org/wiki/Class_(set_theory)

    In other set theories, such as New Foundations or the theory of semisets, the concept of "proper class" still makes sense (not all classes are sets) but the criterion of sethood is not closed under subsets. For example, any set theory with a universal set has proper classes which are subclasses of sets.

  7. Russell's paradox - Wikipedia

    en.wikipedia.org/wiki/Russell's_paradox

    Further, since set theory was seen as the basis for an axiomatic development of all other branches of mathematics, Russell's paradox threatened the foundations of mathematics as a whole. This motivated a great deal of research around the turn of the 20th century to develop a consistent (contradiction-free) set theory.

  8. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    It is the algebra of the set-theoretic operations of union, intersection and complementation, and the relations of equality and inclusion. For a basic introduction to sets see the article on sets, for a fuller account see naive set theory, and for a full rigorous axiomatic treatment see axiomatic set theory.

  9. Naive set theory - Wikipedia

    en.wikipedia.org/wiki/Naive_set_theory

    Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics. [3] Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language.