When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fifth power (algebra) - Wikipedia

    en.wikipedia.org/wiki/Fifth_power_(algebra)

    In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n. Fifth powers are also formed by multiplying a number by its fourth power, or the square of a number by its cube. The sequence of fifth powers of integers is:

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Here, 243 is the 5th power of 3, or 3 raised to the 5th power. The word "raised" is usually omitted, ... Every power of one equals: 1 n = 1. Powers of zero

  4. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Analogously, the inverses of tetration are often called the super-root, and the super-logarithm (In fact, all hyperoperations greater than or equal to 3 have analogous inverses); e.g., in the function =, the two inverses are the cube super-root of y and the super-logarithm base y of x.

  5. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    Two to the power of n, written as 2 n, is the number of values in which the bits in a binary word of length n can be set, where each bit is either of two values. A word, interpreted as representing an integer in a range starting at zero, referred to as an "unsigned integer", can represent values from 0 (000...000 2) to 2 n − 1 (111...111 2) inclusively.

  6. Arithmetica - Wikipedia

    en.wikipedia.org/wiki/Arithmetica

    5 (Epsilon is the 5th letter of the Greek alphabet) ι ¯ {\displaystyle {\overline {\iota }}} 10 ( Iota is the 9th letter of the modern Greek alphabet but it was the 10th letter of an ancient archaic Greek alphabet that had the letter digamma (uppercase: Ϝ, lowercase: ϝ) in the 6th position between epsilon ε and zeta ζ.)

  7. Seventh power - Wikipedia

    en.wikipedia.org/wiki/Seventh_power

    In arithmetic and algebra, the seventh power of a number n is the result of multiplying seven instances of n together. So: n 7 = n × n × n × n × n × n × n.. Seventh powers are also formed by multiplying a number by its sixth power, the square of a number by its fifth power, or the cube of a number by its fourth power.

  8. Regular number - Wikipedia

    en.wikipedia.org/wiki/Regular_number

    Thus, 1/54, in sexagesimal, is 1/60 + 6/60 2 + 40/60 3, also denoted 1:6:40 as Babylonian notational conventions did not specify the power of the starting digit. Conversely 1/4000 = 54/60 3 , so division by 1:6:40 = 4000 can be accomplished by instead multiplying by 54 and shifting three sexagesimal places.

  9. 256 (number) - Wikipedia

    en.wikipedia.org/wiki/256_(number)

    256 is a composite number, with the factorization 256 = 2 8, which makes it a power of two. 256 is 4 raised to the 4th power, so in tetration notation, 256 is 2 4. [1] 256 is the value of the expression , where =. 256 is a perfect square (16 2). 256 is the only 3-digit number that is zenzizenzizenzic.