Ad
related to: formula for density in maths
Search results
Results From The WOW.Com Content Network
Density (volumetric mass density or specific mass) is a substance's mass per unit of volume. The symbol most often used for density is ρ (the lower case Greek letter rho ), although the Latin letter D can also be used.
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is [2] [3] = ().
Figure 1: The left graph shows a probability density function. The right graph shows the cumulative distribution function. The value at a in the cumulative distribution equals the area under the probability density curve up to the point a. Absolutely continuous probability distributions can be described in several ways.
Sigmoid curves are also common in statistics as cumulative distribution functions (which go from 0 to 1), such as the integrals of the logistic density, the normal density, and Student's t probability density functions. The logistic sigmoid function is invertible, and its inverse is the logit function.
Specifically, if the mass-density at time t=0 is given by a Dirac delta, which essentially means that the mass is initially concentrated in a single point, then the mass-distribution at time t will be given by a Gaussian function, with the parameter a being linearly related to 1/ √ t and c being linearly related to √ t; this time-varying ...
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
A subset A of positive integers has natural density α if the proportion of elements of A among all natural numbers from 1 to n converges to α as n tends to infinity.. More explicitly, if one defines for any natural number n the counting function a(n) as the number of elements of A less than or equal to n, then the natural density of A being α exactly means that [1]