Search results
Results From The WOW.Com Content Network
A tree diagram may represent a series of independent events (such as a set of coin flips) or conditional probabilities (such as drawing cards from a deck, without replacing the cards). [1] Each node on the diagram represents an event and is associated with the probability of that event. The root node represents the certain event and therefore ...
Thus, there must be some outcome (way of flipping the coins) so that the number of tails is at least 1.5. Since the number of tails is an integer, in such an outcome there are at least 2 tails. QED. In this example the random experiment consists of flipping three fair coins. The experiment is illustrated by the rooted tree in the adjacent diagram.
The probabilistic convolution tree-based dynamic programming method also efficiently solves the probabilistic generalization of the change-making problem, where uncertainty or fuzziness in the goal amount W makes it a discrete distribution rather than a fixed quantity, where the value of each coin is likewise permitted to be fuzzy (for instance ...
The game host then opens one of the other doors, say 3, to reveal a goat and offers to let the player switch from door 1 to door 2. The Monty Hall problem is a brain teaser, in the form of a probability puzzle, based nominally on the American television game show Let's Make a Deal and named after its original host, Monty Hall.
A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Tree diagram illustrating the beetle example. R, C, P and ¯ are the events rare, common, pattern and no pattern. Percentages in parentheses are calculated. Three independent values are given, so it is possible to calculate the inverse tree.
A decision tree is a flowchart-like structure in which each internal node represents a "test" on an attribute (e.g. whether a coin flip comes up heads or tails), each branch represents the outcome of the test, and each leaf node represents a class label (decision taken after computing all attributes).