Search results
Results From The WOW.Com Content Network
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
In the above examples, the cardinality of the set A is 4, while the cardinality of set B and set C are both 3. An infinite set is a set with an infinite number of elements, while a finite set is a set with a finite number of elements. The above examples are examples of finite sets.
8 Ways of defining sets/Relation to descriptive set theory. 9 More general objects still called sets. 10 See also. Toggle the table of contents. List of types of sets.
The empty set serves as the initial object in Set with empty functions as morphisms. Every singleton is a terminal object, with the functions mapping all elements of the source sets to the single target element as morphisms. There are thus no zero objects in Set. The category Set is complete and co-complete.
A set is described by listing elements separated by commas, or by a characterizing property of its elements, within braces { }. [8] Since sets are objects, the membership relation can relate sets as well, i.e., sets themselves can be members of other sets. A derived binary relation between two sets is the subset relation, also called set inclusion.
The term is commonly used in mathematics and computer science to refer to a listing of all of the elements of a set. The precise requirements for an enumeration (for example, whether the set must be finite, or whether the list is allowed to contain repetitions) depend on the discipline of study and the context of a given problem.
Each set of elements has a least upper bound (their "join") and a greatest lower bound (their "meet"), so that it forms a lattice, and more specifically (for partitions of a finite set) it is a geometric and supersolvable lattice. [6] [7] The partition lattice of a 4-element set has 15 elements and is depicted in the Hasse diagram on the left.