Search results
Results From The WOW.Com Content Network
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
The number of elements in a particular set is a property known as cardinality; informally, this is the size of a set. [5] In the above examples, the cardinality of the set A is 4, while the cardinality of set B and set C are both 3.
Each set of elements has a least upper bound (their "join") and a greatest lower bound (their "meet"), so that it forms a lattice, and more specifically (for partitions of a finite set) it is a geometric and supersolvable lattice. [6] [7] The partition lattice of a 4-element set has 15 elements and is depicted in the Hasse diagram on the left.
A k –elements combination from some set is another name for a k –elements subset, so the number of combinations, denoted as C(n, k) (also called binomial coefficient) is a number of subsets with k elements in a set with n elements; in other words it's the number of sets with k elements which are elements of the power set of a set with n ...
Partitions of sets can be arranged in a partial order, showing that each partition of a set of size n "uses" one of the partitions of a set of size n − 1. The 52 partitions of a set with 5 elements. In general, is the number of partitions of a set of size .
A set is described by listing elements separated by commas, or by a characterizing property of its elements, within braces { }. [8] Since sets are objects, the membership relation can relate sets as well, i.e., sets themselves can be members of other sets. A derived binary relation between two sets is the subset relation, also called set inclusion.
A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null, the smallest infinite cardinal. In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set.
The empty set is the set containing no elements. In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. [1] Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced.