When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    Interchanging the vector field v and ∇ operator, we arrive at the cross product of a vector field with curl of a vector field: = () , where ∇ F is the Feynman subscript notation, which considers only the variation due to the vector field F (i.e., in this case, v is treated as being constant in space).

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    For a tensor field of order k > 1, the tensor field of order k is defined by the recursive relation = where is an arbitrary constant vector. A tensor field of order greater than one may be decomposed into a sum of outer products, and then the following identity may be used: = ().

  4. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    The line integral of a vector field over a loop is equal to the surface integral of its curl over the enclosed surface. Stokes' theorem is a special case of the generalized Stokes theorem. [5] [6] In particular, a vector field on can be considered as a 1-form in which case its curl is its exterior derivative, a 2-form.

  5. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    The classical Stokes' theorem relates the surface integral of the curl of a vector field over a surface in Euclidean three-space to the line integral of the vector field over its boundary. It is a special case of the general Stokes theorem (with n = 2 {\displaystyle n=2} ) once we identify a vector field with a 1-form using the metric on ...

  6. Del - Wikipedia

    en.wikipedia.org/wiki/Del

    When applied to a field (a function defined on a multi-dimensional domain), it may denote any one of three operations depending on the way it is applied: the gradient or (locally) steepest slope of a scalar field (or sometimes of a vector field, as in the Navier–Stokes equations); the divergence of a vector field; or the curl (rotation) of a ...

  7. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .

  8. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    where ⋆ is the Hodge star operator, ♭ and ♯ are the musical isomorphisms, f is a scalar field and F is a vector field. Note that the expression for curl requires ♯ to act on ⋆d(F ♭), which is a form of degree n − 2. A natural generalization of ♯ to k-forms of arbitrary degree allows this expression to make sense for any n.

  9. Green's theorem - Wikipedia

    en.wikipedia.org/wiki/Green's_theorem

    The following is a proof of half of the theorem for the simplified area D, a type I region where C 1 and C 3 are curves connected by vertical lines (possibly of zero length). A similar proof exists for the other half of the theorem when D is a type II region where C 2 and C 4 are curves connected by horizontal lines (again, possibly of zero ...