When.com Web Search

  1. Ads

    related to: quadratic vs parabola worksheet 7th

Search results

  1. Results From The WOW.Com Content Network
  2. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    In mathematics, a quadratic function of a single variable is a function of the form [1] = + +,,where ⁠ ⁠ is its variable, and ⁠ ⁠, ⁠ ⁠, and ⁠ ⁠ are coefficients.The expression ⁠ + + ⁠, especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two.

  3. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...

  4. Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Bézier_curve

    As a parabola is a conic section, some sources refer to quadratic Béziers as "conic arcs". [12] With reference to the figure on the right, the important features of the parabola can be derived as follows: [13] Tangents to the parabola at the endpoints of the curve (A and B) intersect at its control point (C).

  5. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    If the parabola is tangent to the x-axis, there is a double root, which is the x-coordinate of the contact point between the graph and parabola. If the parabola does not intersect the x-axis, there are two complex conjugate roots. Although these roots cannot be visualized on the graph, their real and imaginary parts can be. [17]

  6. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola , the parabola , and the ellipse ; the circle is a special case of the ellipse, though it was sometimes considered a fourth type.

  7. Algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Algebraic_geometry

    Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems.Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.