When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. atan2 - Wikipedia

    en.wikipedia.org/wiki/Atan2

    atan2(y, x) returns the angle θ between the positive x-axis and the ray from the origin to the point (x, y), confined to (−π, π].Graph of ⁡ (,) over /. In computing and mathematics, the function atan2 is the 2-argument arctangent.

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  4. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...

  5. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    The principal values of the square roots are both defined, except if z belongs to the real interval (−∞, 1]. If the argument of the logarithm is real, then z is real and has the same sign. Thus, the above formula defines a principal value of arcosh outside the real interval (−∞, 1], which is thus the unique branch cut.

  6. Machin-like formula - Wikipedia

    en.wikipedia.org/wiki/Machin-like_formula

    Since the arctangent of one has a very slow convergence rate if we find two complex numbers that when multiplied will result in the same real and imaginary part we will have a Machin-like formula. An example is ( 2 + i ) {\textstyle (2+\mathrm {i} )} and ( 3 + i ) {\textstyle (3+\mathrm {i} )} .

  7. CORDIC - Wikipedia

    en.wikipedia.org/wiki/CORDIC

    CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...

  8. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Illustration of the sum formula. Draw a horizontal line (the x -axis); mark an origin O. Draw a line from O at an angle α {\displaystyle \alpha } above the horizontal line and a second line at an angle β {\displaystyle \beta } above that; the angle between the second line and the x -axis is α + β . {\displaystyle \alpha +\beta .}

  9. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    The extremely slow convergence of the arctangent series for | | makes this formula impractical per se. Kerala-school mathematicians used additional correction terms to speed convergence. John Machin (1706) expressed ⁠ 1 4 π {\displaystyle {\tfrac {1}{4}}\pi } ⁠ as a sum of arctangents of smaller values, eventually resulting in a variety of ...