Search results
Results From The WOW.Com Content Network
Levinthal's paradox is a thought experiment in the field of computational protein structure prediction; protein folding seeks a stable energy configuration. An algorithmic search through all possible conformations to identify the minimum energy configuration (the native state) would take an immense duration; however in reality protein folding happens very quickly, even in the case of the most ...
An alpha-helix with hydrogen bonds (yellow dots) The α-helix is the most abundant type of secondary structure in proteins. The α-helix has 3.6 amino acids per turn with an H-bond formed between every fourth residue; the average length is 10 amino acids (3 turns) or 10 Å but varies from 5 to 40 (1.5 to 11 turns).
[1] [2] If the equilibrium was maintained at all steps, the process theoretically should be reversible during equilibrium folding. Equilibrium unfolding can be used to determine the thermodynamic stability of the protein or RNA structure, i.e. free energy difference between the folded and unfolded states.
If the points are sequentially numbered and located at positions r 1, r 2, r 3, etc. then bond vectors are defined by u 1 = r 2 − r 1, u 2 = r 3 − r 2, and u i = r i+1 − r i, more generally. [2] This is the case for kinematic chains or amino acids in a protein structure. In these cases, one is often interested in the half-planes defined ...
A polyproline helix is a type of protein secondary structure which occurs in proteins comprising repeating proline residues. [1] A left-handed polyproline II helix (PPII, poly-Pro II, κ-helix [2]) is formed when sequential residues all adopt (φ,ψ) backbone dihedral angles of roughly (-75°, 150°) and have trans isomers of their peptide bonds.
The folding of many proteins begins even during the translation of the polypeptide chain. The amino acids interact with each other to produce a well-defined three-dimensional structure, known as the protein's native state. This structure is determined by the amino-acid sequence or primary structure. [2]
In computational biology, protein pK a calculations are used to estimate the pK a values of amino acids as they exist within proteins. These calculations complement the p K a values reported for amino acids in their free state, and are used frequently within the fields of molecular modeling , structural bioinformatics , and computational biology .
Thermodynamic stability of proteins represents the free energy difference between the folded and unfolded protein states. This free energy difference is very sensitive to temperature, hence a change in temperature may result in unfolding or denaturation. Protein denaturation may result in loss of function, and loss of native state.