Search results
Results From The WOW.Com Content Network
In electronics, a local oscillator (LO) is an electronic oscillator used with a mixer to change the frequency of a signal. This frequency conversion process, also called heterodyning, produces the sum and difference frequencies from the frequency of the local oscillator and frequency of the input signal. Processing a signal at a fixed frequency ...
The Kuramoto model (or Kuramoto–Daido model), first proposed by Yoshiki Kuramoto (蔵本 由紀, Kuramoto Yoshiki), [1] [2] is a mathematical model used in describing synchronization. More specifically, it is a model for the behavior of a large set of coupled oscillators .
A stable learning algorithm would produce a similar classifier with both the 1000-element and 999-element training sets. Stability can be studied for many types of learning problems, from language learning to inverse problems in physics and engineering, as it is a property of the learning process rather than the type of information being learned.
Fessenden's receiver did not see much application because of its local oscillator's stability problem. A stable yet inexpensive local oscillator was not available until Lee de Forest invented the triode vacuum tube oscillator. [8] In a 1905 patent, Fessenden stated that the frequency stability of his local oscillator was one part per thousand. [9]
The Van der Pol oscillator was originally proposed by the Dutch electrical engineer and physicist Balthasar van der Pol while he was working at Philips. [2] Van der Pol found stable oscillations, [3] which he subsequently called relaxation-oscillations [4] and are now known as a type of limit cycle, in electrical circuits employing vacuum tubes.
In the bifurcation theory, a bounded oscillation that is born without loss of stability of stationary set is called a hidden oscillation.In nonlinear control theory, the birth of a hidden oscillation in a time-invariant control system with bounded states means crossing a boundary, in the domain of the parameters, where local stability of the stationary states implies global stability (see, e.g ...
The definition for discrete-time systems is almost identical to that for continuous-time systems. The definition below provides this, using an alternate language commonly used in more mathematical texts. Let (X, d) be a metric space and f : X → X a continuous function. A point x in X is said to be Lyapunov stable, if,
If >, when ˙ hold only for in some neighborhood of the origin, and the set {˙ =}does not contain any trajectories of the system besides the trajectory () =,, then the local version of the invariance principle states that the origin is locally asymptotically stable.