Search results
Results From The WOW.Com Content Network
The mathematical statement of this problem is as follows: pick a random permutation on n elements and k values from the range 1 to n, also at random, call these marks. What is the probability that there is at least one mark on every cycle of the permutation? The claim is this probability is k/n.
Graphs of probabilities of getting the best candidate (red circles) from n applications, and k/n (blue crosses) where k is the sample size. The secretary problem demonstrates a scenario involving optimal stopping theory [1] [2] that is studied extensively in the fields of applied probability, statistics, and decision theory.
Suppose each random variable can take on the value of -1 or 1, and the probability of each random variable's value depends on its immediately adjacent neighbours. This is a simple example of a discrete random field. More generally, the values each can take on might be defined over a continuous domain. In larger grids, it can also be useful to ...
The moment generating function of a real random variable is the expected value of , as a function of the real parameter . For a normal distribution with density f {\textstyle f} , mean μ {\textstyle \mu } and variance σ 2 {\textstyle \sigma ^{2}} , the moment generating function exists and is equal to
Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, or the Smirnov transform) is a basic method for pseudo-random number sampling, i.e., for generating sample numbers at random from any probability distribution given its cumulative distribution function.
Formally, a multivariate random variable is a column vector = (, …,) (or its transpose, which is a row vector) whose components are random variables on the probability space (,,), where is the sample space, is the sigma-algebra (the collection of all events), and is the probability measure (a function returning each event's probability).
In the 1950s, a hardware random number generator named ERNIE was used to draw British premium bond numbers. The first "testing" of random numbers for statistical randomness was developed by M.G. Kendall and B. Babington Smith in the late 1930s, and was based upon looking for certain types of probabilistic expectations in a given sequence. The ...
In some cases, data reveals an obvious non-random pattern, as with so-called "runs in the data" (such as expecting random 0–9 but finding "4 3 2 1 0 4 3 2 1..." and rarely going above 4). If a selected set of data fails the tests, then parameters can be changed or other randomized data can be used which does pass the tests for randomness.