Search results
Results From The WOW.Com Content Network
Plastids function to store different components including starches, fats, and proteins. [9] All plastids are derived from proplastids, which are present in the meristematic regions of the plant. Proplastids and young chloroplasts typically divide by binary fission, but more mature chloroplasts also have this capacity.
Chloroplasts, containing thylakoids, visible in the cells of Rosulabryum capillare, a type of moss. A chloroplast (/ ˈ k l ɔːr ə ˌ p l æ s t,-p l ɑː s t /) [1] [2] is a type of organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells.
H + ions from the lumen of the thylakoid into the cytosol of a cyanobacterium or the stroma of a chloroplast. A steep H + gradient is formed, which allows chemiosmosis to occur, where the thylakoid, transmembrane ATP-synthase serves a dual function as a "gate" or channel for H + ions and a catalytic site for the formation of ATP from ADP + a PO ...
Chloroplasts have their own genome, which encodes a number of thylakoid proteins. However, during the course of plastid evolution from their cyanobacterial endosymbiotic ancestors, extensive gene transfer from the chloroplast genome to the cell nucleus took place. This results in the four major thylakoid protein complexes being encoded in part ...
Chloroplasts probably evolved following an endosymbiotic event between an ancestral, photosynthetic cyanobacterium and an early eukaryotic phagotroph. [17] This event (termed primary endosymbiosis) is at the origin of the red and green algae (including the land plants or Embryophytes which emerged within them) and the glaucophytes, which together make up the oldest evolutionary lineages of ...
[1] Each photosystem has two parts: a reaction center, where the photochemistry occurs, and an antenna complex, which surrounds the reaction center. The antenna complex contains hundreds of chlorophyll molecules which funnel the excitation energy to the center of the photosystem. At the reaction center, the energy will be trapped and ...
The structure and function of cytochrome b 6 f (in chloroplasts) is very similar to cytochrome bc 1 (Complex III in mitochondria). Both are transmembrane structures that remove electrons from a mobile, lipid-soluble electron carrier (plastoquinone in chloroplasts; ubiquinone in mitochondria) and transfer them to a mobile, water-soluble electron ...
A diagram of a chloroplast. The TIC and TOC complexes are located on different sides of the chloroplast membrane.. The TIC and TOC complexes are translocons located in the chloroplast of a eukaryotic cell, that is, protein complexes that facilitate the transfer of proteins in and out through the chloroplast's membrane.