When.com Web Search

  1. Ad

    related to: surfaces of constant gaussian curvature calculator with solution of 2

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    Two surfaces which both have constant positive Gaussian curvature but with either an open boundary or singular points. Minding's theorem (1839) states that all surfaces with the same constant curvature K are locally isometric. A consequence of Minding's theorem is that any surface whose curvature is identically zero can be constructed by ...

  3. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    If a surface has constant Gaussian curvature, it is called a surface of constant curvature. [52] The unit sphere in E 3 has constant Gaussian curvature +1. The Euclidean plane and the cylinder both have constant Gaussian curvature 0. A unit pseudosphere has constant Gaussian curvature -1 (apart from its equator, that is singular).

  4. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...

  5. Constant-mean-curvature surface - Wikipedia

    en.wikipedia.org/.../Constant-mean-curvature_surface

    In differential geometry, constant-mean-curvature (CMC) surfaces are surfaces with constant mean curvature. [1] [2] This includes minimal surfaces as a subset, but typically they are treated as special case. Note that these surfaces are generally different from constant Gaussian curvature surfaces, with the important exception of the sphere.

  6. Sine-Gordon equation - Wikipedia

    en.wikipedia.org/wiki/Sine-Gordon_equation

    This is the original form of the sine-Gordon equation, as it was considered in the 19th century in the course of investigation of surfaces of constant Gaussian curvature K = −1, also called pseudospherical surfaces. Consider an arbitrary pseudospherical surface. Across every point on the surface there are two asymptotic curves.

  7. Theorema Egregium - Wikipedia

    en.wikipedia.org/wiki/Theorema_egregium

    A sphere of radius R has constant Gaussian curvature which is equal to 1/R 2. At the same time, a plane has zero Gaussian curvature. As a corollary of Theorema Egregium, a piece of paper cannot be bent onto a sphere without crumpling. Conversely, the surface of a sphere cannot be unfolded onto a flat plane without distorting the distances.

  8. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    The Gaussian curvature of a surface is given by = =, where L, M, and N are the coefficients of the second fundamental form. Theorema egregium of Gauss states that the Gaussian curvature of a surface can be expressed solely in terms of the first fundamental form and its derivatives, so that K is in fact an intrinsic invariant of the surface.

  9. Gauss map - Wikipedia

    en.wikipedia.org/wiki/Gauss_Map

    A surface with a parabolic line and its Gauss map. A ridge passes through the parabolic line giving rise to a cusp on the Gauss map. The Gauss map reflects many properties of the surface: when the surface has zero Gaussian curvature, (that is along a parabolic line) the Gauss map will have a fold catastrophe. [2]