Search results
Results From The WOW.Com Content Network
A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...
The minor sector is shaded in green while the major sector is shaded white. A circular sector, also known as circle sector or disk sector or simply a sector (symbol: ⌔), is the portion of a disk (a closed region bounded by a circle) enclosed by two radii and an arc, with the smaller area being known as the minor sector and the larger being the major sector. [1]
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry, a circular segment or disk segment (symbol: ⌓) is a region of a disk [1] which is "cut off" from the rest of the disk by a straight line.
Any two points on a great circle separate it into two arcs analogous to line segments in the plane; the shorter is called the minor arc and is the shortest path between the points, and the longer is called the major arc. A circle with non-zero geodesic curvature is called a small circle, and is analogous to a
In geometry, the sagitta (sometimes abbreviated as sag [1]) of a circular arc is the distance from the midpoint of the arc to the midpoint of its chord. [2] It is used extensively in architecture when calculating the arc necessary to span a certain height and distance and also in optics where it is used to find the depth of a spherical mirror ...
The shorter of the two great-circle arcs between two distinct points on the sphere is called the minor arc, and is the shortest surface-path between them. Its arc length is the great-circle distance between the points (the intrinsic distance on a sphere), and is proportional to the measure of the central angle formed by the two points and the ...
In Euclidean geometry, an arc (symbol: ⌒) is a connected subset of a differentiable curve. Arcs of lines are called segments, rays, or lines, depending on how they are bounded. A common curved example is an arc of a circle, called a circular arc. In a sphere (or a spheroid), an arc of a great circle (or a great ellipse) is called a great arc.
The circle is the basis for the wheel, which, with related inventions such as gears, makes much of modern machinery possible. In mathematics, the study of the circle has helped inspire the development of geometry, astronomy and calculus.