When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear matrix inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_matrix_inequality

    In convex optimization, a linear matrix inequality (LMI) is an expression of the form ⁡ ():= + + + + where = [, =, …,] is a real vector,,,, …, are symmetric matrices, is a generalized inequality meaning is a positive semidefinite matrix belonging to the positive semidefinite cone + in the subspace of symmetric matrices .

  3. Farkas' lemma - Wikipedia

    en.wikipedia.org/wiki/Farkas'_lemma

    There exist y 1, y 2 such that 6y 1 + 3y 2 ≥ 0, 4y 1 ≥ 0, and b 1 y 1 + b 2 y 2 < 0. Here is a proof of the lemma in this special case: If b 2 ≥ 0 and b 1 − 2b 2 ≥ 0, then option 1 is true, since the solution of the linear equations is = and =.

  4. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods were developed for solving large sparse linear systems, which arose as finite-difference discretizations of differential equations. [2] [3] They are also used for the solution of linear equations for linear least-squares problems [4] and also for systems of linear inequalities, such as those arising in linear programming.

  5. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope , which is a set defined as the intersection of finitely many half spaces , each of which is defined by a linear inequality.

  6. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    Defining the vectorization operator ⁡ as stacking the columns of a matrix and as the Kronecker product of and , the continuous time and discrete time Lyapunov equations can be expressed as solutions of a matrix equation. Furthermore, if the matrix is "stable", the solution can also be expressed as an integral (continuous time case) or as an ...

  7. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.

  8. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    Matrix multiplication is defined in such a way that the product of two matrices is the matrix of the composition of the corresponding linear maps, and the product of a matrix and a column matrix is the column matrix representing the result of applying the represented linear map to the represented vector. It follows that the theory of finite ...

  9. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.