Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
Related to this distribution are a number of other distributions: the displaced Poisson, the hyper-Poisson, the general Poisson binomial and the Poisson type distributions. The Conway–Maxwell–Poisson distribution, a two-parameter extension of the Poisson distribution with an adjustable rate of decay.
In probability theory, the zero-truncated Poisson distribution (ZTP distribution) is a certain discrete probability distribution whose support is the set of positive integers. This distribution is also known as the conditional Poisson distribution [ 1 ] or the positive Poisson distribution . [ 2 ]
The probability mass function of a Poisson-distributed random variable with mean μ is given by (;) =!.for (and zero otherwise). The Skellam probability mass function for the difference of two independent counts = is the convolution of two Poisson distributions: (Skellam, 1946)
In probability theory, a compound Poisson distribution is the probability distribution of the sum of a number of independent identically-distributed random variables, where the number of terms to be added is itself a Poisson-distributed variable. The result can be either a continuous or a discrete distribution.
A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.
In probability theory and statistics, the Conway–Maxwell–Poisson (CMP or COM–Poisson) distribution is a discrete probability distribution named after Richard W. Conway, William L. Maxwell, and Siméon Denis Poisson that generalizes the Poisson distribution by adding a parameter to model overdispersion and underdispersion.
In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters.