When.com Web Search

  1. Ad

    related to: working principle of genetic algorithm

Search results

  1. Results From The WOW.Com Content Network
  2. Genetic algorithm - Wikipedia

    en.wikipedia.org/wiki/Genetic_algorithm

    Genetic algorithms in particular became popular through the work of John Holland in the early 1970s, and particularly his book Adaptation in Natural and Artificial Systems (1975). His work originated with studies of cellular automata , conducted by Holland and his students at the University of Michigan .

  3. Genetic programming - Wikipedia

    en.wikipedia.org/wiki/Genetic_programming

    Genetic programming (GP) is an evolutionary algorithm, an artificial intelligence technique mimicking natural evolution, which operates on a population of programs. It applies the genetic operators selection according to a predefined fitness measure , mutation and crossover .

  4. Selection (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Selection_(evolutionary...

    Selection is a genetic operator in an evolutionary algorithm (EA). An EA is a metaheuristic inspired by biological evolution and aims to solve challenging problems at least approximately. Selection has a dual purpose: on the one hand, it can choose individual genomes from a population for subsequent breeding (e.g., using the crossover operator ...

  5. Tournament selection - Wikipedia

    en.wikipedia.org/wiki/Tournament_selection

    Tournament selection has several benefits over alternative selection methods for genetic algorithms (for example, fitness proportionate selection and reward-based selection): it is efficient to code, works on parallel architectures and allows the selection pressure to be easily adjusted. [2]

  6. Mutation (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Mutation_(evolutionary...

    The classic example of a mutation operator of a binary coded genetic algorithm (GA) involves a probability that an arbitrary bit in a genetic sequence will be flipped from its original state. A common method of implementing the mutation operator involves generating a random variable for each bit in a sequence.

  7. Multiple sequence alignment - Wikipedia

    en.wikipedia.org/wiki/Multiple_sequence_alignment

    One such technique, genetic algorithms, has been used for MSA production in an attempt to broadly simulate the hypothesized evolutionary process that gave rise to the divergence in the query set. The method works by breaking a series of possible MSAs into fragments and repeatedly rearranging those fragments with the introduction of gaps at ...

  8. Bioinformatics - Wikipedia

    en.wikipedia.org/wiki/Bioinformatics

    These pipelines are used to better understand the genetic basis of disease, unique adaptations, desirable properties (especially in agricultural species), or differences between populations. Bioinformatics also includes proteomics , which tries to understand the organizational principles within nucleic acid and protein sequences.

  9. Category:Genetic algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Genetic_algorithms

    A genetic algorithm (GA) is an algorithm used to find approximate solutions to difficult-to-solve problems through application of the principles of evolutionary biology to computer science. Genetic algorithms use biologically-derived techniques such as inheritance , mutation , natural selection , and recombination .