Search results
Results From The WOW.Com Content Network
Informally, an NP-complete problem is an NP problem that is at least as "tough" as any other problem in NP. NP-hard problems are those at least as hard as NP problems; i.e., all NP problems can be reduced (in polynomial time) to them. NP-hard problems need not be in NP; i.e., they need not have solutions verifiable in polynomial time.
The problem has been shown to be NP-hard (more precisely, it is complete for the complexity class FP NP; see function problem), and the decision problem version ("given the costs and a number x, decide whether there is a round-trip route cheaper than x") is NP-complete. The bottleneck travelling salesman problem is also NP-hard.
As it is suspected, but unproven, that P≠NP, it is unlikely that any polynomial-time algorithms for NP-hard problems exist. [3] [4] A simple example of an NP-hard problem is the subset sum problem. Informally, if H is NP-hard, then it is at least as difficult to solve as the problems in NP.
There is often only a small difference between a problem in P and an NP-complete problem. For example, the 3-satisfiability problem, a restriction of the Boolean satisfiability problem, remains NP-complete, whereas the slightly more restricted 2-satisfiability problem is in P (specifically, it is NL-complete), but the slightly more general max ...
As both n and L grow large, SSP is NP-hard. The complexity of the best known algorithms is exponential in the smaller of the two parameters n and L. The problem is NP-hard even when all input integers are positive (and the target-sum T is a part of the input). This can be proved by a direct reduction from 3SAT. [2]
Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Under the assumption that P ≠ NP, the existence of problems within NP but outside both P and NP-complete was established by Ladner. [1] In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems.
Graph coloring is computationally hard. It is NP-complete to decide if a given graph admits a k-coloring for a given k except for the cases k ∈ {0,1,2}. In particular, it is NP-hard to compute the chromatic number. [33] The 3-coloring problem remains NP-complete even on 4-regular planar graphs. [34]
Computationally, the problem is NP-hard, and the corresponding decision problem, deciding if items can fit into a specified number of bins, is NP-complete. Despite its worst-case hardness, optimal solutions to very large instances of the problem can be produced with sophisticated algorithms. In addition, many approximation algorithms exist.