Search results
Results From The WOW.Com Content Network
In Project Hail Mary, also by Weir, the protagonist's spaceship uses a constant 1.5 g acceleration spin drive to travel between the Solar System, Tau Ceti and 40 Eridani. Explorers on the Moon, one of the Adventures of Tintin series of comic albums by Hergé, features a crewed Moon rocket with an unspecified 'atomic rocket motor'. The ship ...
The pronunciation of the name Uranus preferred among astronomers is / ˈ jʊər ə n ə s / YOOR-ə-nəs, [1] with the long "u" of English and stress on the first syllable as in Latin Uranus, in contrast to / j ʊ ˈ r eɪ n ə s / yoo-RAY-nəs, with stress on the second syllable and a long a, though both are considered acceptable. [g]
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
Alone but certainly unique, Uranus rotates at a nearly 90-degree angle and is surrounded by 13 icy rings. Images of which were captured in rich detail last year by the James Webb Space Telescope .
NASA scientists say Uranus' rings have only been captured by two other cameras. They were first scoped out by the Voyager 2 spacecraft as it flew past in 1986. Later, the Kec
A gravity assist, gravity assist maneuver, swing-by, or generally a gravitational slingshot in orbital mechanics, is a type of spaceflight flyby which makes use of the relative movement (e.g. orbit around the Sun) and gravity of a planet or other astronomical object to alter the path and speed of a spacecraft, typically to save propellant and reduce expense.
The few minor planets rotating faster than 2.2 hours, therefore, can not be merely held together by self-gravity, but must be formed of a contiguous solid. [3] Potentially slow rotators have only an inaccurate period, estimated based on a fragmentary lightcurve and inconclusive measurement.
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day ), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space ).