Ad
related to: conjugate posterior probability equation examples with solutions
Search results
Results From The WOW.Com Content Network
In Bayesian probability theory, if, given a likelihood function (), the posterior distribution is in the same probability distribution family as the prior probability distribution (), the prior and posterior are then called conjugate distributions with respect to that likelihood function and the prior is called a conjugate prior for the likelihood function ().
Conjugate priors are especially useful for sequential estimation, where the posterior of the current measurement is used as the prior in the next measurement. In sequential estimation, unless a conjugate prior is used, the posterior distribution typically becomes more complex with each added measurement, and the Bayes estimator cannot usually ...
The Dirichlet distribution is the conjugate prior distribution of the categorical distribution (a generic discrete probability distribution with a given number of possible outcomes) and multinomial distribution (the distribution over observed counts of each possible category in a set of categorically distributed observations).
An informative prior expresses specific, definite information about a variable. An example is a prior distribution for the temperature at noon tomorrow. A reasonable approach is to make the prior a normal distribution with expected value equal to today's noontime temperature, with variance equal to the day-to-day variance of atmospheric temperature, or a distribution of the temperature for ...
Analytically, when the mode(s) of the posterior density can be given in closed form. This is the case when conjugate priors are used. Via numerical optimization such as the conjugate gradient method or Newton's method. This usually requires first or second derivatives, which have to be evaluated analytically or numerically.
In statistics, the inverse Wishart distribution, also called the inverted Wishart distribution, is a probability distribution defined on real-valued positive-definite matrices. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal distribution.
Determining the prior probabilities in such cases often requires solving a differential equation, which may not yield a unique solution. However, many continuous variable problems do have prior probabilities which are uniquely defined by the principle of transformation groups, which Jaynes referred to as " well-posed " problems.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us