Ad
related to: mechanical properties of rubber materials examples with solutions
Search results
Results From The WOW.Com Content Network
Rubber's ability to sustain large deformations with relatively little damage or permanent set makes it ideal for many applications. Pages in category "Rubber properties" The following 31 pages are in this category, out of 31 total.
Rubber elasticity is the ability of solid rubber to be stretched up to a factor of 10 from its original length, and return to close to its original length upon release. This process can be repeated many times with no apparent degradation to the rubber. [1] Rubber, like all materials, consists of molecules.
Silicone rubber is a reliable solution (as opposed to rubber and thermoplastic elastomers) for migration or interaction problems between the main active ingredients. Its chemical stability prevents it from affecting any substrate it is in contact with (skin, water, blood, active ingredients, etc.).
Viscoelastic materials have elements of both of these properties and, as such, exhibit time-dependent strain. Whereas elasticity is usually the result of bond stretching along crystallographic planes in an ordered solid, viscosity is the result of the diffusion of atoms or molecules inside an amorphous material.
The reinforcing material, usually a kind of fibre, provides the strength and stiffness. The rubber matrix, with low strength and stiffness, provides air-fluid tightness and supports the reinforcing materials to maintain their relative positions. These positions are of great importance because they influence the resulting mechanical properties.
Rubber-like solids with elastic properties are called elastomers. Polymer chains are held together in these materials by relatively weak intermolecular bonds , which permit the polymers to stretch in response to macroscopic stresses.
The rubber particle is an enzymatically active entity that contains three layers of material, the rubber particle, a biomembrane and free monomeric units. The biomembrane is held tightly to the rubber core by the high negative charge along the double bonds of the rubber polymer backbone. [ 34 ]
The strongest mechanical properties and greatest heat resistance is obtained with sulfur contents around 35% while the highest impact strength can be obtained with a lower sulfur content of 30%. The rigidity of hard rubber at room temperature is attributed to the van der Waals forces between the intramolecular sulfur atoms. Raising the ...