Ad
related to: bohr model for sodium ion charge level
Search results
Results From The WOW.Com Content Network
The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]
This result can be generalized to other systems, such as positronium (an electron orbiting a positron) and muonium (an electron orbiting an anti-muon) by using the reduced mass of the system and considering the possible change in charge. Typically, Bohr model relations (radius, energy, etc.) can be easily modified for these exotic systems (up ...
His proposals were based on the then current Bohr model of the atom, in which the electron shells were orbits at a fixed distance from the nucleus. Bohr's original configurations would seem strange to a present-day chemist: sulfur was given as 2.4.4.6 instead of 1s 2 2s 2 2p 6 3s 2 3p 4 (2.8.6). Bohr used 4 and 6 following Alfred Werner's 1893 ...
The Bohr model explains the atomic spectrum of hydrogen (see Hydrogen spectral series) as well as various other atoms and ions. It is not perfectly accurate, but is a remarkably good approximation in many cases, and historically played an important role in the development of quantum mechanics. The Bohr model posits that electrons revolve around ...
The fine-structure constant gives the maximum positive charge of an atomic nucleus that will allow a stable electron-orbit around it within the Bohr model (element feynmanium). [20] For an electron orbiting an atomic nucleus with atomic number Z the relation is mv 2 / r = 1 / 4πε 0 Ze 2 / r 2 .
A hydrogen-like atom (or hydrogenic atom) is any atom or ion with a single valence electron.These atoms are isoelectronic with hydrogen.Examples of hydrogen-like atoms include, but are not limited to, hydrogen itself, all alkali metals such as Rb and Cs, singly ionized alkaline earth metals such as Ca + and Sr + and other ions such as He +, Li 2+, and Be 3+ and isotopes of any of the above.
Complementarity as a physical model derives from Niels Bohr's 1927 lecture during the Como Conference in Italy, at a scientific celebration of the work of Alessandro Volta 100 years previous. [ 4 ] : 103 Bohr's subject was complementarity, the idea that measurements of quantum events provide complementary information through seemingly ...
In 1915 Bohr published a paper noting that the measurements of Franck and Hertz were more consistent with the assumption of quantum levels in his own model for atoms. [21] In the Bohr model, the collision excited an internal electron within the atom from its lowest level to the first quantum level above it.