Search results
Results From The WOW.Com Content Network
The specific strength is a material's (or muscle's) strength (force per unit area at failure) divided by its density. It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa ...
Plot of Young's modulus vs density. The colors represent families of materials. An Ashby plot, named for Michael Ashby of Cambridge University, is a scatter plot which displays two or more properties of many materials or classes of materials. [5] These plots are useful to compare the ratio between different properties.
Specific modulus: Modulus per unit volume (MPa/m^3) Specific strength: Strength per unit density (Nm/kg) Specific weight: Weight per unit volume (N/m^3) Surface roughness: The deviations in the direction of the normal vector of a real surface from its ideal form; Tensile strength: Maximum tensile stress of a material can withstand before ...
A United States Navy Aviation boatswain's mate tests the specific gravity of JP-5 fuel. Relative density, also called specific gravity, [1] [2] is a dimensionless quantity defined as the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material.
Specific modulus is a materials property consisting of the elastic modulus per mass density of a material. It is also known as the stiffness to weight ratio or specific stiffness . High specific modulus materials find wide application in aerospace applications where minimum structural weight is required.
The ratio of two extensive properties of the same object or system is an intensive property. For example, the ratio of an object's mass and volume, which are two extensive properties, is density, which is an intensive property. [10] More generally properties can be combined to give new properties, which may be called derived or composite ...
The density ratio of a column of seawater is a measure of the relative contributions of temperature and salinity in determining the density gradient. [1] At a density ratio of 1, temperature and salinity are said to be compensated: their density signatures cancel, leaving a density gradient of zero. The formula for the density ratio, , is ...
Electric and magnetic fields can store energy and its density relates to the strength of the fields within a given volume. This (volumetric) energy density is given by u = ε 2 E 2 + 1 2 μ B 2 {\displaystyle u={\frac {\varepsilon }{2}}\mathbf {E} ^{2}+{\frac {1}{2\mu }}\mathbf {B} ^{2}} where E is the electric field , B is the magnetic field ...