Ad
related to: calculus what is a normal line definition physics calculator formula
Search results
Results From The WOW.Com Content Network
In geometry, a normal is an object (e.g. a line, ray, or vector) that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the line perpendicular to the tangent line to the curve at the point. A normal vector of length one is called a unit normal vector.
In calculus, the method of normals was a technique invented by Descartes for finding normal and tangent lines to curves. It represented one of the earliest methods for constructing tangents to curves. The method hinges on the observation that the radius of a circle is always normal to the circle itself. With this in mind Descartes would ...
To this definition fits naturally the Kelvin–Stokes theorem, as a global formula corresponding to the definition. It equates the surface integral of the curl of a vector field to the above line integral taken around the boundary of the surface.
The normal curvature, k n, is the curvature of the curve projected onto the plane containing the curve's tangent T and the surface normal u; the geodesic curvature, k g, is the curvature of the curve projected onto the surface's tangent plane; and the geodesic torsion (or relative torsion), τ r, measures the rate of change of the surface ...
To see this, consider the unit normal ^ in the right side of the equation. Since in Green's theorem d r = ( d x , d y ) {\displaystyle d\mathbf {r} =(dx,dy)} is a vector pointing tangential along the curve, and the curve C is the positively oriented (i.e. anticlockwise) curve along the boundary, an outward normal would be a vector which points ...
The first Frenet-Serret formula holds by the definition of the normal N and the curvature κ, and the third Frenet-Serret formula holds by the definition of the torsion τ. Thus what is needed is to show the second Frenet-Serret formula. Since T, N, B are orthogonal unit vectors with B = T × N, one also has T = N × B and N = B × T.
To calculate the flux of a vector field F (red arrows) through a surface S the surface is divided into small patches dS. The flux through each patch is equal to the normal (perpendicular) component of the field, the dot product of F(x) with the unit normal vector n(x) (blue arrows) at the point x multiplied by the area dS.
The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let ( m , n ) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point ( x 0 , y 0 ).