Ads
related to: recombinant dna technology examples plants
Search results
Results From The WOW.Com Content Network
Recombinant DNA is widely used in biotechnology, medicine and research. Today, recombinant proteins and other products that result from the use of DNA technology are found in essentially every pharmacy, physician or veterinarian office, medical testing laboratory, and biological research laboratory.
When Agrobacterium infects a plant, it transfers this T-DNA to a random site in the plant genome. When used in genetic engineering the bacterial T-DNA is removed from the bacterial plasmid and replaced with the desired foreign gene. The bacterium is a vector, enabling transportation of foreign genes into plants.
In plants the DNA is often inserted using Agrobacterium-mediated recombination, [27] taking advantage of the Agrobacteriums T-DNA sequence that allows natural insertion of genetic material into plant cells. [28] Plant tissue are cut into small pieces and soaked in a fluid containing suspended Agrobacterium. The bacteria will attach to many of ...
This is an accepted version of this page This is the latest accepted revision, reviewed on 13 February 2025. Manipulation of an organism's genome For a non-technical introduction to the topic of genetics, see Introduction to genetics. For the song by Orchestral Manoeuvres in the Dark, see Genetic Engineering (song). For the Montreal hardcore band, see Genetic Control. Part of a series on ...
Recombination can be artificially induced in laboratory (in vitro) settings, producing recombinant DNA for purposes including vaccine development. V(D)J recombination in organisms with an adaptive immune system is a type of site-specific genetic recombination that helps immune cells rapidly diversify to recognize and adapt to new pathogens .
Genetically modified plants have been engineered for scientific research, to create new colours in plants, deliver vaccines, and to create enhanced crops. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors .
Similar technology, but using a truncated version of the polygalacturonase gene, was used to make a tomato paste. [8] DNA Plant Technology (DNAP), Agritope, and Monsanto developed tomatoes that delayed ripening by preventing the production of ethylene, [8] a hormone that triggers ripening of fruit. [9]
A plantibody is an antibody that is produced by plants that have been genetically engineered with animal DNA encoding a specific human antibody known to neutralize a particular pathogen or toxin. The transgenic plants produce antibodies that are similar to their human counterparts, and following purification, plantibodies can be administered ...