When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles , see Trigonometric functions . Other definitions, and therefore other proofs are based on the Taylor series of sine and cosine , or on the differential equation f ″ + f = 0 ...

  3. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    This proof is independent of the Pythagorean theorem, insofar as it is based only on the right-triangle definition of cosine and obtains squared side lengths algebraically. Other proofs typically invoke the Pythagorean theorem explicitly, and are more geometric, treating a cos γ as a label for the length of a certain line segment. [12]

  4. Direction cosine - Wikipedia

    en.wikipedia.org/wiki/Direction_cosine

    More generally, direction cosine refers to the cosine of the angle between any two vectors. They are useful for forming direction cosine matrices that express one set of orthonormal basis vectors in terms of another set, or for expressing a known vector in a different basis. Simply put, direction cosines provide an easy method of representing ...

  5. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The spherical cosine formulae were originally proved by elementary geometry and the planar cosine rule (Todhunter, [1] Art.37). He also gives a derivation using simple coordinate geometry and the planar cosine rule (Art.60). The approach outlined here uses simpler vector methods. (These methods are also discussed at Spherical law of cosines.)

  6. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  7. Trigonometric functions of matrices - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions_of...

    If X is a diagonal matrix, sin X and cos X are also diagonal matrices with (sin X) nn = sin(X nn) and (cos X) nn = cos(X nn), that is, they can be calculated by simply taking the sines or cosines of the matrices's diagonal components. The analogs of the trigonometric addition formulas are true if and only if XY = YX: [2]

  8. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    If the law of cosines is used to solve for c, the necessity of inverting the cosine magnifies rounding errors when c is small. In this case, the alternative formulation of the law of haversines is preferable. [3] A variation on the law of cosines, the second spherical law of cosines, [4] (also called the cosine rule for angles [1]) states:

  9. cis (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Cis_(mathematics)

    cis is a mathematical notation defined by cis x = cos x + i sin x, [nb 1] where cos is the cosine function, i is the imaginary unit and sin is the sine function. x is the argument of the complex number (angle between line to point and x-axis in polar form).