Search results
Results From The WOW.Com Content Network
Genetic linkage is the tendency of DNA sequences that are close together on a chromosome to be inherited together during the meiosis phase of sexual reproduction.Two genetic markers that are physically near to each other are unlikely to be separated onto different chromatids during chromosomal crossover, and are therefore said to be more linked than markers that are far apart.
The most common method is to use a heatmap, where colors are used to indicate the loci with positive linkage disequilibrium, and linkage equilibrium. This example displays the full heatmap, but because the heatmap is symmetrical across the diagonal (that is, the linkage disequilibrium between loci A and B is the same as between B and A), a ...
Klann linkage is a six-bar linkage that forms a leg mechanism; Toggle mechanisms are four-bar linkages that are dimensioned so that they can fold and lock. The toggle positions are determined by the colinearity of two of the moving links. [19] The linkage is dimensioned so that the linkage reaches a toggle position just before it folds.
In the study of mechanisms, a four-bar linkage, also called a four-bar, is the simplest closed-chain movable linkage. It consists of four bodies, called bars or links, connected in a loop by four joints. Generally, the joints are configured so the links move in parallel planes, and the assembly is called a planar four-bar linkage. Spherical and ...
Clinical chemotherapeutics can induce enzymatic and non-enzymatic DNA-protein crosslinks. An example of this induction is with platinum derivatives, such as cisplatin and oxaliplatin. They create non-enzymatic DNA-protein crosslinks through non-specific crosslinking of chromatin-interacting proteins to DNA.
The mechanism of the ligation reaction was first elucidated in the laboratory of I. Robert Lehman. [4] [5] Two fragments of DNA may be joined by DNA ligase which catalyzes the formation of a phosphodiester bond between the 3'-hydroxyl group (-OH) at one end of a strand of DNA and the 5'-phosphate group (-PO4) of another.
In biology, a mechanism is a system of causally interacting parts and processes that produce one or more effects. [1] Phenomena can be explained by describing their mechanisms. For example, natural selection is a mechanism of evolution; other mechanisms of evolution include genetic drift, mutation, and gene flow.
Linkage is the proximity of two or more markers on a chromosome; the closer together the markers are, the lower the probability that they will be separated by recombination. Genes are said to be linked when the frequency of parental type progeny exceeds that of recombinant progeny.