When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  3. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    The ellipse thus generated has its second focus at the center of the directrix circle, and the ellipse lies entirely within the circle. For the parabola, the center of the directrix moves to the point at infinity (see Projective geometry). The directrix "circle" becomes a curve with zero curvature, indistinguishable from a straight line.

  4. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  5. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section.

  6. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    The eccentricity of a circle is defined to be zero and its focus is the center of the circle, but its directrix can only be taken as the line at infinity in the projective plane. [2] The eccentricity of an ellipse can be seen as a measure of how far the ellipse deviates from being circular. [3]

  7. n-ellipse - Wikipedia

    en.wikipedia.org/wiki/N-ellipse

    The 1-ellipse is the circle, and the 2-ellipse is the classic ellipse. Both are algebraic curves of degree 2. For any number n of foci, the n-ellipse is a closed, convex curve. [2]: (p. 90) The curve is smooth unless it goes through a focus. [5]: p.7

  8. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    The ellipse lies within the XY-plane; The fourth assumption can be made without loss of generality because any three points (or vectors) must lie within a common plane. Under these assumptions the second focus (sometimes called the "empty" focus) must also lie within the XY-plane: = (,).

  9. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    A parabola has only one focus, and can be considered as a limit curve of a set of ellipses (or a set of hyperbolas), where one focus and one vertex are kept fixed, while the second focus is moved to infinity. If this transformation is performed on each conic in an orthogonal net of confocal ellipses and hyperbolas, the limit is an orthogonal ...