Search results
Results From The WOW.Com Content Network
Work hardening, also known as strain hardening, is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation. This characteristic is what sets ductile materials apart from brittle materials. [1] Work hardening may be desirable, undesirable, or inconsequential, depending on the application.
Therefore, ECC is not a fixed material design, but a broad range of topics under different stages of research, development, and implementations. The ECC material family is expanding. The development of an individual mix design of ECC requires special efforts by systematically engineering of the material at nano-, micro-, macro- and composite ...
The condition of a fiber-reinforced composite under applied tensile stress along the direction of the fibers can be decomposed into four stages from small strain to large strain. Since the stress is parallel to the fibers, the deformation is described by the isostrain condition, i.e., the fiber and matrix experience the same strain.
Under tensile stress, plastic deformation is characterized by a strain hardening region and a necking region and finally, fracture (also called rupture). During strain hardening the material becomes stronger through the movement of atomic dislocations. The necking phase is indicated by a reduction in cross-sectional area of the specimen.
Thus the basic influence parameters for the forming limits are, the strain hardening exponent, n, the initial sheet thickness, t 0 and the strain rate hardening coefficient, m. The lankford coefficient, r, which defines the plastic anisotropy of the material, has two effects on the forming limit curve. On the left side there is no influence ...
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic transition.
Finally, the last stage represents a saturation in strain relaxation due to strain hardening. [7] Strain engineering has been well-studied in complex oxide systems, in which epitaxial strain can strongly influence the coupling between the spin, charge, and orbital degrees of freedom, and thereby impact the electrical and magnetic properties.
This phenomenon is known as Strain/Work hardening. [18] For a viscoplastic material the hardening curves are not significantly different from those of rate-independent plastic material. Nevertheless, three essential differences can be observed. At the same strain, the higher the rate of strain the higher the stress