Ads
related to: how to implement explainable ai project
Search results
Results From The WOW.Com Content Network
Marvin Minsky et al. raised the issue that AI can function as a form of surveillance, with the biases inherent in surveillance, suggesting HI (Humanistic Intelligence) as a way to create a more fair and balanced "human-in-the-loop" AI. [61] Explainable AI has been recently a new topic researched amongst the context of modern deep learning.
Prompt engineering is the process of structuring an instruction that can be interpreted and understood by a generative artificial intelligence (AI) model. [1] [2]A prompt is natural language text describing the task that an AI should perform. [3]
Open-source artificial intelligence is an AI system that is freely available to use, study, modify, and share. [1] These attributes extend to each of the system's components, including datasets, code, and model parameters, promoting a collaborative and transparent approach to AI development. [1]
Security is a critical consideration in AI engineering, particularly as AI systems become increasingly integrated into sensitive and mission-critical applications. AI engineers implement robust security measures to protect models from adversarial attacks, such as evasion and poisoning, which can compromise system integrity and performance ...
Recognizing the importance of explainability in AI, the Partnership on AI hosted a one-day, in-person workshop focused on the deployment of “explainable artificial intelligence” (XAI). This event brought together experts from various industries to discuss and explore the concept of XAI.
The field of Explainable AI seeks to provide better explanations from existing algorithms, and algorithms that are more easily explainable, but it is a young and active field. [ 18 ] [ 19 ] Others argue that the difficulties with explainability are due to its overly narrow focus on technical solutions rather than connecting the issue to the ...