Search results
Results From The WOW.Com Content Network
In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: (). The trapezoidal rule works by approximating the region under the graph of the function f ( x ) {\displaystyle f(x)} as a trapezoid and calculating its area.
The formula is credited to Heron (or Hero) of Alexandria (fl. 60 AD), [3] and a proof can be found in his book Metrica. Mathematical historian Thomas Heath suggested that Archimedes knew the formula over two centuries earlier, [ 4 ] and since Metrica is a collection of the mathematical knowledge available in the ancient world, it is possible ...
The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4 , and should not be confused with the mass moment of inertia .
In geometry, a trapezoid (/ ˈ t r æ p ə z ɔɪ d /) in North American English, or trapezium ... where K is the area of the quadrilateral. [16]: Thm.8 ...
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
Heron's formula for the area of a triangle is the special case obtained by taking d = 0. The relationship between the general and extended form of Brahmagupta's formula is similar to how the law of cosines extends the Pythagorean theorem .
The area of an isosceles (or any) trapezoid is equal to the average of the lengths of the base and top (the parallel sides) times the height. In the adjacent diagram, if we write AD = a , and BC = b , and the height h is the length of a line segment between AD and BC that is perpendicular to them, then the area K is
The formula for the area of a trapezoid can be simplified using Pitot's theorem to get a formula for the area of a tangential trapezoid. If the bases have lengths a, b, and any one of the other two sides has length c, then the area K is given by the formula [2] (This formula can be used only in cases where the bases are parallel.)