When.com Web Search

  1. Ad

    related to: inscribed angle theorem proof

Search results

  1. Results From The WOW.Com Content Network
  2. Inscribed angle - Wikipedia

    en.wikipedia.org/wiki/Inscribed_angle

    Equivalently, an inscribed angle is defined by two chords of the circle sharing an endpoint. The inscribed angle theorem relates the measure of an inscribed angle to that of the central angle intercepting the same arc. The inscribed angle theorem appears as Proposition 20 in Book 3 of Euclid's Elements.

  3. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    As stated above, Thales's theorem is a special case of the inscribed angle theorem (the proof of which is quite similar to the first proof of Thales's theorem given above): Given three points A, B and C on a circle with center O, the angle ∠ AOC is twice as large as the angle ∠ ABC. A related result to Thales's theorem is the following:

  4. Mixtilinear incircles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Mixtilinear_incircles_of_a...

    The inscribed angle theorem implies that ,, and ,, are triples of collinear points. Pascal's theorem on hexagon X C A B Y T A {\displaystyle XCABYT_{A}} inscribed in Γ {\displaystyle \Gamma } implies that D , I , E {\displaystyle D,I,E} are collinear.

  5. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Then angle APB is the arithmetic mean of the angles AOB and COD. This is a direct consequence of the inscribed angle theorem and the exterior angle theorem. There are no cyclic quadrilaterals with rational area and with unequal rational sides in either arithmetic or geometric progression. [26]

  6. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    Proof of the theorem. We need to prove that AF = FD.We will prove that both AF and FD are in fact equal to FM.. To prove that AF = FM, first note that the angles FAM and CBM are equal, because they are inscribed angles that intercept the same arc of the circle (CD).

  7. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    If two angles are inscribed on the same chord and on opposite sides of the chord, then they are supplementary. For a cyclic quadrilateral, the exterior angle is equal to the interior opposite angle. An inscribed angle subtended by a diameter is a right angle (see Thales' theorem). The diameter is the longest chord of the circle. Among all the ...

  8. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    Conversely, a convex quadrilateral in which the four angle bisectors meet at a point must be tangential and the common point is the incenter. [4] According to the Pitot theorem, the two pairs of opposite sides in a tangential quadrilateral add up to the same total length, which equals the semiperimeter s of the quadrilateral:

  9. Incenter - Wikipedia

    en.wikipedia.org/wiki/Incenter

    It is a theorem in Euclidean geometry that the three interior angle bisectors of a triangle meet in a single point. In Euclid's Elements, Proposition 4 of Book IV proves that this point is also the center of the inscribed circle of the triangle. The incircle itself may be constructed by dropping a perpendicular from the incenter to one of the ...