Search results
Results From The WOW.Com Content Network
Often, we reduce the data to a single numerical statistic, e.g., , whose marginal probability distribution is closely connected to a main question of interest in the study. The p-value is used in the context of null hypothesis testing in order to quantify the statistical significance of a result, the result being the observed value of the ...
More precisely, a study's defined significance level, denoted by , is the probability of the study rejecting the null hypothesis, given that the null hypothesis is true; [4] and the p-value of a result, , is the probability of obtaining a result at least as extreme, given that the null hypothesis is true. [5]
The p-value does not indicate the size or importance of the observed effect. [2] A small p-value can be observed for an effect that is not meaningful or important. In fact, the larger the sample size, the smaller the minimum effect needed to produce a statistically significant p-value (see effect size).
The p-value is the probability that a test statistic which is at least as extreme as the one obtained would occur under the null hypothesis. At a significance level of 0.05, a fair coin would be expected to (incorrectly) reject the null hypothesis (that it is fair) in 1 out of 20 tests on average.
The following is an example that shows how to compute power for a randomized experiment: Suppose the goal of an experiment is to study the effect of a treatment on some quantity, and so we shall compare research subjects by measuring the quantity before and after the treatment, analyzing the data using a one-sided paired t-test, with a ...
p-value of chi-squared distribution for different number of degrees of freedom. The p-value was introduced by Karl Pearson [6] in the Pearson's chi-squared test, where he defined P (original notation) as the probability that the statistic would be at or above a given level. This is a one-tailed definition, and the chi-squared distribution is ...
Although this p-value objectified research outcome, using it as a rigid cut off point can have potentially serious consequences: (i) clinically important differences observed in studies might be statistically non-significant (a type II error, or false negative result) and therefore be unfairly ignored; this often is a result of having a small ...
In broad usage, the "practical clinical significance" answers the question, how effective is the intervention or treatment, or how much change does the treatment cause. In terms of testing clinical treatments, practical significance optimally yields quantified information about the importance of a finding, using metrics such as effect size, number needed to treat (NNT), and preventive fraction ...